Search results
Results from the WOW.Com Content Network
In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.
For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere . If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its ...
In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).
For example, + is a quadratic ... which have only one variable and may include terms of degree less than two. ... is the polar form of q. A quadratic form q : ...
Example 1: = +) + Example 2: ... This is an identity even when and are not real, i.e. the two variables and ¯ may be considered independent. Putting ¯ = ...
the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] The pole is analogous to the origin in a Cartesian coordinate system.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
The basic form as given by Box and Muller takes two samples from the uniform distribution on the interval (0,1) and maps them to two standard, normally distributed samples. The polar form takes two samples from a different interval, [−1,+1], and maps them to two normally distributed samples without the use of sine or cosine functions.