Search results
Results from the WOW.Com Content Network
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √ 2 times the circular and hyperbolic functions. The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation. [23] The Gudermannian function gives a direct relationship ...
Cumulative Distribution Function of Hyperbolastic Type I, Logistic, and Hyperbolastic Type II PDF of H1, Logistic, and H2. Hyperbolastic regressions are statistical models that utilize standard hyperbolastic functions to model a dichotomous or multinomial outcome variable. The purpose of hyperbolastic regression is to predict an outcome using a ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
Growth equations. Like exponential growth and logistic growth, hyperbolic growth is highly nonlinear, but differs in important respects.These functions can be confused, as exponential growth, hyperbolic growth, and the first half of logistic growth are convex functions; however their asymptotic behavior (behavior as input gets large) differs dramatically:
Just as the trigonometric functions are defined in terms of the unit circle, so also the hyperbolic functions are defined in terms of the unit hyperbola, as shown in this diagram. In a unit circle, the angle (in radians) is equal to twice the area of the circular sector which that angle subtends.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...