Search results
Results from the WOW.Com Content Network
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]
Floating point operations per second (FLOPS) are one measure of computer performance.FLOPS can be recorded in different measures of precision, however the standard measure (used by the TOP500 supercomputer list) uses 64 bit (double-precision floating-point format) operations per second using the High Performance LINPACK (HPLinpack) benchmark.
A zettascale computer system could generate more single floating point data in one second than was stored by any digital means on Earth in the first quarter of 2011. [ citation needed ] Beyond zettascale computing (>10 21 )
Petascale computing refers to computing systems capable of performing at least 1 quadrillion (10^15) floating-point operations per second (FLOPS).These systems are often called petaflops systems and represent a significant leap from traditional supercomputers in terms of raw performance, enabling them to handle vast datasets and complex computations.
The performance measured by the LINPACK benchmark consists of the number of 64-bit floating-point operations, generally additions and multiplications, a computer can perform per second, also known as FLOPS. However, a computer's performance when running actual applications is likely to be far behind the maximal performance it achieves running ...
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
The FPS AP-120B was a 38-bit, pipeline-oriented array processor manufactured by Floating Point Systems. It was designed to be attached to a host computer such as a DEC PDP-11 as a fast number-cruncher. Data transfer was accomplished using direct memory access. Processor cycle time was 167 nanoseconds, giving a speed of 6 MHz.
The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question. The number of instructions per second is an approximate indicator of the likely performance of the ...