enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The cross product of two vectors u and v would be represented as: By some conventions (e.g. in France and in some areas of higher mathematics), this is also denoted by a wedge, [ 13 ] which avoids confusion with the wedge product since the two are functionally equivalent in three dimensions: u ∧ v {\displaystyle \mathbf {u} \wedge \mathbf {v} }

  4. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = ⁡, where θ is the angle between the two unit vectors, and is also the angle between u and v.

  5. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    If imagined as a parallelogram, with the origin for the vectors at 0, then signed area is the determinant of the vectors' Cartesian coordinates (a x b y − b x a y). [21] The cross product a × b is orthogonal to the bivector a ∧ b. In three dimensions all bivectors can be generated by the exterior product of two vectors.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  8. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Consider n-dimensional vectors that are formed as a list of n scalars, such as the three-dimensional vectors = [] = []. These vectors are said to be scalar multiples of each other, or parallel or collinear , if there is a scalar λ such that x = λ y . {\displaystyle \mathbf {x} =\lambda \mathbf {y} .}

  9. Plot (graphics) - Wikipedia

    en.wikipedia.org/wiki/Plot_(graphics)

    A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were used. Graphs are a visual representation of the relationship between variables, which are very ...