Search results
Results from the WOW.Com Content Network
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...
If D(a, b) < 0 then (a, b) is a saddle point of f. If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows: If the Hessian is positive-definite at x , {\displaystyle x,} then f {\displaystyle f} attains an isolated local minimum at x . {\displaystyle x.}
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.
In mathematics, the max–min inequality is as follows: . For any function : , (,) (,) .When equality holds one says that f, W, and Z satisfies a strong max–min property (or a saddle-point property).