Search results
Results from the WOW.Com Content Network
One possible explanation for the braking is the interaction of the protostar's magnetic field with the stellar wind. In the case of the Solar System, when the planets' angular momenta are compared to the Sun's own, the Sun has less than 1% of its supposed angular momentum. In other words, the Sun has slowed down its spin while the planets have not.
The red planet is stationary; the force F(r) is balanced by a repulsive inverse-cube force. A GIF version of this animation is found here. Figure 2: The radius r of the green and blue planets are the same, but their angular speed differs by a factor k. Examples of such orbits are shown in Figures 1 and 3–5.
In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...
If formed in the gravity field of a planet as the planet is forming, a moon will orbit the planet in the same direction as the planet is rotating and is a regular moon. If an object is formed elsewhere and later captured into orbit by a planet's gravity, it can be captured into either a retrograde or prograde orbit depending on whether it first ...
In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity , Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.
The common noun ‘moon’ (not capitalized) is used to mean any natural satellite of the other planets. Tidal force is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.
In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. [1] The other forces can include a third (fourth, fifth, etc.) body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body.
Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.