Search results
Results from the WOW.Com Content Network
This intrinsic type of control means that the blood vessels can automatically adjust their own vascular tone, by dilating (widening) or constricting (narrowing), in response to some change in the environment. This change occurs in order to match up the tissue's oxygen demand with the actual oxygen supply available in the blood as closely as ...
Since the heart is a very aerobic organ, needing oxygen for the efficient production of ATP & Creatine Phosphate from fatty acids (and to a smaller extent, glucose & very little lactate), the coronary circulation is auto regulated so that the heart receives the right flow of blood & hence sufficient supply of oxygen.
The heart is the driver of the circulatory system, pumping blood through rhythmic contraction and relaxation. The rate of blood flow out of the heart (often expressed in L/min) is known as the cardiac output (CO). Blood being pumped out of the heart first enters the aorta, the largest artery of the body.
the vagus nerve, part of the parasympathetic branch of the autonomic nervous system, to lower heart rate. The cardiovascular centre also increases the stroke volume of the heart (that is, the amount of blood it pumps). These two changes help to regulate the cardiac output, so that a sufficient amount of blood reaches tissues.
This system is especially significant in the kidneys, where the glomerular filtration rate (the rate of blood filtration by the nephron) is particularly sensitive to changes in blood pressure. However, with the aid of the myogenic mechanism, the glomerular filtration rate remains very insensitive to changes in human blood pressure. [1]
Hormone secretions that target the heart and blood vessels are affected by the stimulation of baroreceptors. At normal resting blood pressures, baroreceptors discharge with each heart beat. If blood pressure falls, such as on orthostatic hypotension or in hypovolaemic shock , baroreceptor firing rate decreases and baroreceptor reflexes act to ...
In renal physiology, renal blood flow (RBF) is the volume of blood delivered to the kidneys per unit time. In humans, the kidneys together receive roughly 20 - 25% of cardiac output, amounting to 1.2 - 1.3 L/min in a healthy adult. [1] It passes about 94% to the cortex.
Microfluidics has already contributed to in vitro experiments on cardiomyocytes, which generate the electrical impulses that control the heart rate. [41] For instance, researchers have built an array of PDMS microchambers, aligned with sensors and stimulating electrodes as a tool that will electrochemically and optically monitor the ...