enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  3. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .

  4. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    A page of the Liber Abaci from the National Central Library.The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence).

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...

  7. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  8. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    Each rectangle has a Fibonacci number F j as width (blue number in the center) and F j−1 as height. The vertical bands have width 10. The vertical bands have width 10. In mathematics , Zeckendorf's theorem , named after Belgian amateur mathematician Edouard Zeckendorf , is a theorem about the representation of integers as sums of Fibonacci ...

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    For Fibonacci numbers starting with F 1 = 0 and F 2 = 1 and with each succeeding Fibonacci number being the sum of the preceding two, one can generate a sequence of Pythagorean triples starting from (a 3, b 3, c 3) = (4, 3, 5) via