Search results
Results from the WOW.Com Content Network
In computer science, Thompson's construction algorithm, also called the McNaughton–Yamada–Thompson algorithm, [1] is a method of transforming a regular expression into an equivalent nondeterministic finite automaton (NFA). [2] This NFA can be used to match strings against the regular expression.
A regular expression (shortened as regex or regexp), [1] sometimes referred to as rational expression, [2] [3] is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings , or for input validation .
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]
Here, 0 is a single value pattern. Now, whenever f is given 0 as argument the pattern matches and the function returns 1. With any other argument, the matching and thus the function fail.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
A naive string matching algorithm compares the given pattern against all positions in the given text. Each comparison takes time proportional to the length of the pattern, and the number of positions is proportional to the length of the text. Therefore, the worst-case time for such a method is proportional to the product of the two lengths.
This creates a regular expression that can be checked against each of the minterms, looking for matches. Iterate through each minterm, comparing the regular expression with the binary representation of the minterm, if there is a match append a "1" to the corresponding string in the dictionary.