enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.

  4. HMMER - Wikipedia

    en.wikipedia.org/wiki/HMMER

    A profile HMM modelling a multiple sequence alignment. HMMER is a free and commonly used software package for sequence analysis written by Sean Eddy. [2] Its general usage is to identify homologous protein or nucleotide sequences, and to perform sequence alignments.

  5. Multiple sequence alignment - Wikipedia

    en.wikipedia.org/wiki/Multiple_sequence_alignment

    A profile hidden Markov model (HMM) modelling a multiple sequence alignment. A hidden Markov model (HMM) is a probabilistic model that can assign likelihoods to all possible combinations of gaps, matches, and mismatches, to determine the most likely MSA or set of possible MSAs. HMMs can produce a single highest-scoring output but can also ...

  6. HTK (software) - Wikipedia

    en.wikipedia.org/wiki/HTK_(software)

    HTK (Hidden Markov Model Toolkit) is a proprietary software toolkit for handling HMMs.It is mainly intended for speech recognition, but has been used in many other pattern recognition applications that employ HMMs, including speech synthesis, character recognition and DNA sequencing.

  7. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    In an HMM, the state process is not directly observed – it is a 'hidden' (or 'latent') variable – but observations are made of a state‐dependent process (or observation process) that is driven by the underlying state process (and which can thus be regarded as a noisy measurement of the system states of interest). [7]

  8. Hierarchical hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_hidden_Markov...

    The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]

  9. Category:Hidden Markov models - Wikipedia

    en.wikipedia.org/wiki/Category:Hidden_Markov_models

    Pages in category "Hidden Markov models" The following 8 pages are in this category, out of 8 total. ... Layered hidden Markov model This page was last ...