Search results
Results from the WOW.Com Content Network
In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless data compression technique for constructing a prefix code based on a set of symbols and their probabilities (estimated or measured).
Shannon–Fano codes are suboptimal in the sense that they do not always achieve the lowest possible expected codeword length, as Huffman coding does. [1] However, Shannon–Fano codes have an expected codeword length within 1 bit of optimal. Fano's method usually produces encoding with shorter expected lengths than Shannon's method.
Shannon–Fano–Elias coding produces a binary prefix code, allowing for direct decoding. Let bcode(x) be the rational number formed by adding a decimal point before a binary code. For example, if code(C) = 1010 then bcode(C) = 0.1010. For all x, if no y exists such that
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
The Shannon–Hartley theorem says that the limit of reliable information rate (data rate exclusive of error-correcting codes) of a channel depends on bandwidth and signal-to-noise ratio according to: < (+) where
In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Using these highly efficient codes and with the computing power in today's digital signal processors, it is now possible to reach very close to the Shannon limit. In fact, it was shown that LDPC codes can reach within 0.0045 dB of the Shannon limit (for binary additive white Gaussian noise (AWGN) channels, with very long block lengths). [1]