enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    RSA numbers. In mathematics, the RSA numbers are a set of large semiprimes (numbers with exactly two prime factors) that were part of the RSA Factoring Challenge. The challenge was to find the prime factors of each number. It was created by RSA Laboratories in March 1991 to encourage research into computational number theory and the practical ...

  3. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography. They published a list of semiprimes (numbers with exactly two prime factors) known as the ...

  4. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    An 829-bit key has been broken. RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at ...

  5. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    RSA problem. In cryptography, the RSA problem summarizes the task of performing an RSA private-key operation given only the public key. The RSA algorithm raises a message to an exponent, modulo a composite number N whose factors are not known. Thus, the task can be neatly described as finding the eth roots of an arbitrary number, modulo N.

  6. PKCS 1 - Wikipedia

    en.wikipedia.org/wiki/PKCS_1

    PKCS 1. In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys ...

  7. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  8. The Magic Words are Squeamish Ossifrage - Wikipedia

    en.wikipedia.org/wiki/The_Magic_Words_are...

    Ossifrage ('bone-breaker', from Latin) is an older name for the bearded vulture, a scavenger famous for dropping animal bones and live tortoises on top of rocks to crack them open. The 1993–94 effort began the tradition of using the words "squeamish ossifrage" in cryptanalytic challenges. The difficulty of breaking the RSA cipher ...

  9. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    Barrett reduction. In modular arithmetic, Barrett reduction is a reduction algorithm introduced in 1986 by P.D. Barrett. [1] A naive way of computing. would be to use a fast division algorithm. Barrett reduction is an algorithm designed to optimize this operation assuming is constant, and , replacing divisions by multiplications.