enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    Contraposition. In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

  3. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad impossibile.

  4. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1]), states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all is constant. Equivalently, non-constant holomorphic ...

  5. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  7. Minimal counterexample - Wikipedia

    en.wikipedia.org/wiki/Minimal_counterexample

    In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction. [1][2] More specifically, in trying to prove a proposition P, one first assumes ...

  8. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Constructive proof. In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular ...

  9. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]