Search results
Results from the WOW.Com Content Network
(With 16-bit unsigned saturation, adding any positive amount to 65535 would yield 65535.) Some processors can generate an exception if an arithmetic result exceeds the available precision. Where necessary, the exception can be caught and recovered from—for instance, the operation could be restarted in software using arbitrary-precision ...
Under zero-based numbering, the initial element is sometimes termed the zeroth element, [1] rather than the first element; zeroth is a coined ordinal number corresponding to the number zero. In some cases, an object or value that does not (originally) belong to a given sequence, but which could be naturally placed before its initial element ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Zero-byte files may arise in cases where a program creates a file but aborts or is interrupted prematurely while writing to it. Because writes are cached in memory and only flushed to disk at a later time ( page cache ), a program that does not flush its writes to disk or terminate normally may result in a zero-byte file.
The expression (x & −x) again isolates the least-significant 1 bit. There are then only 32 possible words, which the unsigned multiplication and shift hash to the correct position in the table. This algorithm is branch-free if it does not need to handle the zero input. The technique can be extended to 64-bit words. [45]
In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let
In number theory, zero-sum problems are certain kinds of combinatorial problems about the structure of a finite abelian group. Concretely, given a finite abelian group G and a positive integer n , one asks for the smallest value of k such that every sequence of elements of G of size k contains n terms that sum to 0 .
Stirling's approximation provides an accurate approximation to the factorial of large numbers, showing that it grows more quickly than exponential growth. Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials.