Search results
Results from the WOW.Com Content Network
The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...
This transformation effectively standardizes the scale of and de-correlates the errors. When OLS is used on data with homoscedastic errors, the Gauss–Markov theorem applies, so the GLS estimate is the best linear unbiased estimator for .
If the errors do not follow a multivariate normal distribution, generalized linear models may be used to relax assumptions about Y and U. The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of ...
A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss–Markov theorem, which does not assume that the distribution is normal.
[a] [2] Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. [3]
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.
The least-squares method minimizes the variance of the unbiased estimators of the coefficients, under the conditions of the Gauss–Markov theorem. The least-squares method was published in 1805 by Legendre and in 1809 by Gauss. The first design of an experiment for polynomial regression appeared in an 1815 paper of Gergonne.
The Gauss–Markov theorem shows that, when this is so, ^ is a best linear unbiased estimator . If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted.