Search results
Results from the WOW.Com Content Network
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace.It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to ...
For some distributions, the minimum value of several independent random variables is a member of the same family, with different parameters: Bernoulli distribution, Geometric distribution, Exponential distribution, Extreme value distribution, Pareto distribution, Rayleigh distribution, Weibull distribution. Examples:
The triangular distribution on [a, b], a special case of which is the distribution of the sum of two independent uniformly distributed random variables (the convolution of two uniform distributions). The trapezoidal distribution; The truncated normal distribution on [a, b]. The U-quadratic distribution on [a, b].
In probability theory, the probability distribution of the sum of two independent random variables is the convolution of their individual distributions. In kernel density estimation, a distribution is estimated from sample points by convolution with a kernel, such as an isotropic Gaussian. [40]
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...