Search results
Results from the WOW.Com Content Network
In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively: [2]
In enzymology, a homocysteine S-methyltransferase (EC 2.1.1.10) is an enzyme that catalyzes the chemical reaction. S-methylmethionine + L-homocysteine 2 L-methionine. Thus, the two substrates of this enzyme are S-methylmethionine and L-homocysteine, and it produces 2 molecules of L-methionine.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). [5] [6] Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, [7] and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle.
Pages for logged out editors learn more. Contributions; Talk; Betaine-homocysteine methyltransferase
The enzyme from Escherichia coli consists of two alpha8-beta8 (TIM) barrels positioned face to face and thought to have evolved by gene duplication. [1] The active site lies between the tops of the two barrels, the N-terminal barrel binds 5-methyltetrahydropteroyltri-L-glutamic acid and the C-terminal barrel binds homocysteine.
S-adenosyl-L-methionine + DNA adenine S-adenosyl-L-homocysteine + DNA 6-methylaminopurine m6A was primarily found in prokaryotes until 2015 when it was also identified in some eukaryotes. m6A methyltransferases methylate the amino group in DNA at C-6 position specifically to prevent the host system to digest own genome through restriction enzymes.
DNMT1 is the most abundant DNA methyltransferase in mammalian cells, and considered to be the key maintenance methyltransferase in mammals. It predominantly methylates hemimethylated CpG di-nucleotides in the mammalian genome. The recognition motif for the human enzyme involves only three of the bases in the CpG dinucleotide pair: a C on one ...