enow.com Web Search

  1. Ad

    related to: green's theorem geometry answers

Search results

  1. Results from the WOW.Com Content Network
  2. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  3. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  4. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Green–Tao theorem (number theory) Green's theorem (vector calculus) Grinberg's theorem (graph theory) Gromov's compactness theorem (Riemannian geometry) Gromov's compactness theorem (symplectic topology) Gromov's theorem on groups of polynomial growth (geometric group theory) Gromov–Ruh theorem (differential geometry) Gross–Zagier theorem ...

  6. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

  7. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    It uses only the arc length formula, expression for the area of a plane region from Green's theorem, and the Cauchy–Schwarz inequality. For a given closed curve, the isoperimetric quotient is defined as the ratio of its area and that of the circle having the same perimeter.

  8. George Green (mathematician) - Wikipedia

    en.wikipedia.org/wiki/George_Green_(mathematician)

    The title page to Green's original essay on what is now known as Green's theorem. In 1828, Green published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, which is the essay he is most famous for today. It was published privately at the author's expense, because he thought it would be ...

  9. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel ...

  1. Ad

    related to: green's theorem geometry answers