Search results
Results from the WOW.Com Content Network
Pólya’s theorem can be used to construct an example of two random variables whose characteristic functions coincide over a finite interval but are different elsewhere. Pólya’s theorem. If is a real-valued, even, continuous function which satisfies the conditions =,
The Pólya enumeration theorem can be used to calculate the number of graphs up to isomorphism with a fixed number of vertices, or the generating function of these graphs according to the number of edges they have. For the latter purpose, we can say that a black or present edge has weight 1, while an absent or white edge has weight 0.
[4]: 23–24 The specific topics treated bear witness to the special interests of Pólya (Descartes' rule of signs, Pólya's enumeration theorem), Szegö (polynomials, trigonometric polynomials, and his own work in orthogonal polynomials) and sometimes both (the zeros of polynomials and analytic functions, complex analysis in general).
According to the De Finetti's theorem, there must be a unique prior distribution such that the joint distribution of observing the sequence is a Bayesian mixture of the Bernoulli probabilities. It can be shown that this prior distribution is a beta distribution with parameters β ( ⋅ ; α , γ ) {\displaystyle \beta \left(\cdot ;\,\alpha ...
Users can create accounts and save the graphs and plots that they have created to them. A permalink can then be generated which allows users to share their graphs and elect to be considered for staff picks. The tool comes pre-programmed with 36 different example graphs for the purpose of teaching new users about the tool and the mathematics ...
Marko Riedel, Pólya's enumeration theorem and the symbolic method; Marko Riedel, Cycle indices of the set / multiset operator and the exponential formula; Harald Fripertinger (1997). "Cycle indices of linear, affine and projective groups". Linear Algebra and Its Applications. 263: 133– 156. doi: 10.1016/S0024-3795(96)00530-7. Harald ...
A theorem in the Flajolet–Sedgewick theory of symbolic combinatorics treats the enumeration problem of labelled and unlabelled combinatorial classes by means of the creation of symbolic operators that make it possible to translate equations involving combinatorial structures directly (and automatically) into equations in the generating functions of these structures.
A tree that (as an abstract graph) has 480 symmetries (automorphisms).There are 2 ways of permuting the two children of the upper left vertex, 2 ways of permuting the two children of the upper middle vertex, and 5! = 120 ways of permuting the five children of the upper right vertex, for 2 · 2 · 120 = 480 symmetries altogether.