enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space). [4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with ...

  3. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  5. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    Then there is a unique Hilbert space of functions on X for which K is a reproducing kernel. Proof. For all x in X, define K x = K(x, ⋅ ). Let H 0 be the linear span of {K x : x ∈ X}. Define an inner product on H 0 by

  6. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    The first three functions in the sequence () = ⁡ on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by

  7. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]

  8. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.

  9. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .