Search results
Results from the WOW.Com Content Network
As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite. Thus must also be positive semidefinite. This proves the necessity of the PPT criterion.
The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:
Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation. [3]
Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.
There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider
Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the transpose of B).