Search results
Results from the WOW.Com Content Network
In convex optimization, a linear matrix inequality (LMI) is an expression of the form ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .
Finsler's lemma can be used to give novel linear matrix inequality (LMI) characterizations to stability and control problems. [4] The set of LMIs stemmed from this procedure yields less conservative results when applied to control problems where the system matrices has dependence on a parameter, such as robust control problems and control of ...
It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain. The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich [ 1 ] where it was stated that for the strict frequency inequality.
To establish whether a form h(x) is SOS amounts to solving a convex optimization problem. Indeed, any h(x) can be written as = {} ′ (+ ()) {} where {} is a vector containing a base for the forms of degree m in x (such as all monomials of degree m in x), the prime ′ denotes the transpose, H is any symmetric matrix satisfying = {} ′ {} and () is a linear parameterization of the linear ...
Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation. [3]
In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...
More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.
A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...