Search results
Results from the WOW.Com Content Network
Metallography allows the metallurgist to study the microstructure of metals. A micrograph of bronze revealing a cast dendritic structure Al-Si microstructure. Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. [1]
A microscope with excellent resolution may not be able to image a structure, that is there is no visibility, if image contrast is poor. Image contrast depends upon the quality of the optics, coatings on the lenses, and reduction of flare and glare; but, it also requires proper specimen preparation and good etching techniques. So, obtaining good ...
Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Some common examples of microscopy techniques include:
Composition control of weld metal is often performed to maximise the volume fraction of acicular ferrite due to the toughness it imparts. During continuous cooling, higher alloy contents or faster cooling generally delay transformation, which will then take place at lower temperatures, below the bainite start temperature, and lead to higher ...
Metallography allows the metallurgist to study the microstructure of metals. Metallurgists study the microscopic and macroscopic structure of metals using metallography, a technique invented by Henry Clifton Sorby. In metallography, an alloy of interest is ground flat and polished to a mirror finish.
In geology and materials science, a deformation mechanism is a process occurring at a microscopic scale that is responsible for deformation: changes in a material's internal structure, shape and volume. [1] [2] The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure.
Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite forms by a eutectoid reaction as austenite cools below 723 °C (1,333 °F) (the eutectoid temperature).
Widmanstätten structures form in many other metals as well. They will form in brass, especially if the alloy has a very high zinc content, becoming needles of zinc in the copper matrix. The needles will usually form when the brass cools from the recrystallization temperature, and will become very coarse if the brass is annealed to 1,112 °F ...