Search results
Results from the WOW.Com Content Network
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
As with any binary search tree, the inorder traversal order of the nodes is the same as the sorted order of the keys. The structure of the tree is determined by the requirement that it be heap-ordered: that is, the priority number for any non-leaf node must be greater than or equal to the priority of its children.
In computing, a threaded binary tree is a binary tree variant that facilitates traversal in a particular order. An entire binary search tree can be easily traversed in order of the main key, but given only a pointer to a node , finding the node which comes next may be slow or impossible.
A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
In a binary search tree the internal nodes are labeled by numbers or other ordered values, called keys, arranged so that an inorder traversal of the tree lists the keys in sorted order. The external nodes remain unlabeled. [3] Binary trees may also be studied with all nodes unlabeled, or with labels that are not given in sorted order.
The join (,,) operation takes as input two binary balanced trees and of the same balancing scheme, and a key , and outputs a new balanced binary tree whose in-order traversal is the in-order traversal of , then then the in-order traversal of .
A tree sort is a sort algorithm that builds a binary search tree from the elements to be sorted, and then traverses the tree so that the elements come out in sorted order. [1] Its typical use is sorting elements online : after each insertion, the set of elements seen so far is available in sorted order.