Search results
Results from the WOW.Com Content Network
The 3′-end (three prime end) of a strand is so named due to it terminating at the hydroxyl group of the third carbon in the sugar-ring, and is known as the tail end. The 3′-hydroxyl is necessary in the synthesis of new nucleic acid molecules as it is ligated (joined) to the 5′-phosphate of a separate nucleotide, allowing the formation of ...
The 3′-end (usually pronounced "three prime end") of a negative sense strand, and the 5′-end (usually pronounced "five prime end") of a positive sense strand, is called the left end, and the 5′-end of the negative sense strand, and the 3′-end of a positive sense strand, is called the right end. [2] [4] [5]
In molecular genetics, the three prime untranslated region (3′-UTR) is the section of messenger RNA (mRNA) that immediately follows the translation termination codon. The 3′-UTR often contains regulatory regions that post-transcriptionally influence gene expression .
3' untranslated region (3'-UTR). Also three-prime untranslated region, 3' non-translated region (3'-NTR), and trailer sequence.. 3'-end. Also three-prime end.. One of two ends of a single linear strand of DNA or RNA, specifically the end at which the chain of nucleotides terminates at the third carbon atom in the furanose ring of deoxyribose or ribose (i.e. the terminus at which the 3' carbon ...
A 3′ hydroxyl end of the left-hand (3′) terminus pairs with an internal base to prime initial DNA synthesis, resulting in the conversion of the ssDNA genome to its first duplex form. [ 1 ] [ 7 ] This is a monomeric double-stranded DNA molecule in which the two strands are covalently cross-linked to each other at the left-end by a single ...
During transcription, the original template strand is usually read from the 3' to the 5' end from beginning to end. Subgenomic mRNAs are created when transcription begins at the 3' end of the template strand (or 5' of the to-be-newly synthesized template) and begins to copy towards the 5' end of the template strand before "jumping" to the end of the template and copying the last nucleotides of ...
Life-cycle of a typical virus (left to right); following infection of a cell by a single virus, hundreds of offspring are released. When a virus infects a cell, the virus forces it to make thousands more viruses. It does this by making the cell copy the virus's DNA or RNA, making viral proteins, which all assemble to form new virus particles. [37]
The viral capsid is known for its protection of RNA before it is inserted into the host cell, unlike the viral envelope which protects the protein capsid. [14] The cell from which a virus buds often dies or is weakened, and sheds more viral particles for an extended