Search results
Results from the WOW.Com Content Network
Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
Differentiating between two-sided and one-sided intervals on a standard normal distribution curve. Two-sided intervals estimate a parameter of interest, Θ, with a level of confidence, γ, using a lower and upper bound (). Examples may include estimating the average height of males in a geographic region or lengths of a particular desk made by ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.
For example, f(x) might be the proportion of people of a particular age x who support a given candidate in an election. If x is measured at the precision of a single year, we can construct a separate 95% confidence interval for each age. Each of these confidence intervals covers the corresponding true value f(x) with confidence 0.