Search results
Results from the WOW.Com Content Network
This space-dependence is called a normal mode. Usually, for problems with continuous dependence on (x, y, z) there is no single or finite number of normal modes, but there are infinitely many normal modes. If the problem is bounded (i.e. it is defined on a finite section of space) there are countably many normal modes (usually numbered n = 1, 2 ...
When the two modes are unequal the larger mode is known as the major mode and the other as the minor mode. The least frequent value between the modes is known as the antimode. The difference between the major and minor modes is known as the amplitude. In time series the major mode is called the acrophase and the antimode the batiphase ...
A system's normal mode is defined by the oscillation of a natural frequency in a sine waveform. In analysis of systems, it is convenient to use the angular frequency ω = 2πf rather than the frequency f, or the complex frequency domain parameter s = σ + ωi.
[3] [4] Later work for the multivariate normal distribution allowed the classifier to be nonlinear: [5] several classification rules can be derived based on different adjustments of the Mahalanobis distance, with a new observation being assigned to the group whose centre has the lowest adjusted distance from the observation.
The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...