Search results
Results from the WOW.Com Content Network
When the numerator of a rational function has degree exactly one greater than the denominator, the function has an oblique (slant) asymptote. The asymptote is the polynomial term after dividing the numerator and denominator. This phenomenon occurs because when dividing the fraction, there will be a linear term, and a remainder.
The section on Slant Asymptote is rather confusing. My math teachers are rather confused looking at it . Can someone who knows a little more about the slant asymptotes both check the math and make it a little easier to understand. --Omnipotence407 14:13, 16 January 2008 (UTC) Much confusion.--( fi ) 23:24, 4 March 2008 (UTC)
The field of asymptotics is normally first encountered in school geometry with the introduction of the asymptote, a line to which a curve tends at infinity.The word Ασύμπτωτος (asymptotos) in Greek means non-coincident and puts strong emphasis on the point that approximation does not turn into coincidence.
A function is called a rational function if it can be written in the form [1] = ()where and are polynomial functions of and is not the zero function.The domain of is the set of all values of for which the denominator () is not zero.
An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.
A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.
The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}
The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...