Search results
Results from the WOW.Com Content Network
Star schema used by example query. Consider a database of sales, perhaps from a store chain, classified by date, store and product. The image of the schema to the right is a star schema version of the sample schema provided in the snowflake schema article.
An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...
For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...