enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...

  3. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process ...

  7. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...

  8. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  9. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    Examples of fact data include sales price, sale quantity, and time, distance, speed and weight measurements. Related dimension attribute examples include product models, product colors, product sizes, geographic locations, and salesperson names. A star schema that has many dimensions is sometimes called a centipede schema. [4]