Search results
Results from the WOW.Com Content Network
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
This page was last edited on 25 July 2024, at 18:06 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
Static equilibrium is a state in which the net force and net torque acted upon the system is zero. In other words, both linear momentum and angular momentum of the system are conserved. The principle of virtual work states that the virtual work of the applied forces is zero for all virtual movements of the system from static equilibrium.
Descriptively, a statically determinate structure can be defined as a structure where, if it is possible to find internal actions in equilibrium with external loads, those internal actions are unique. The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible.
Stress analysis is generally concerned with objects and structures that can be assumed to be in macroscopic static equilibrium. By Newton's laws of motion , any external forces being applied to such a system must be balanced by internal reaction forces, [ 15 ] : 97 which are almost always surface contact forces between adjacent particles ...
The static friction increases or decreases in response to the applied force up to an upper limit determined by the characteristics of the contact between the surface and the object. [3] A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as weighing scales and spring balances.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.