Search results
Results from the WOW.Com Content Network
In computer science, a leftist tree or leftist heap is a priority queue implemented with a variant of a binary heap. Every node x has an s-value which is the distance to the nearest leaf in subtree rooted at x. [1] In contrast to a binary heap, a leftist tree attempts to be very unbalanced.
The general heap order must be enforced; Every operation (add, remove_min, merge) on two skew heaps must be done using a special skew heap merge. A skew heap is a self-adjusting form of a leftist heap which attempts to maintain balance by unconditionally swapping all nodes in the merge path when merging two heaps. (The merge operation is also ...
This heap node is the root node of a heap containing all elements from the two subtrees rooted at Q1 and Q2. A nice feature of this meld operation is that it can be defined recursively. If either heaps are null, then the merge is taking place with an empty set and the method simply returns the root node of the non-empty heap.
Leftist tree; Pairing heap; Skew heap; A more complete list with performance comparisons can be found at Heap (data structure) § Comparison of theoretic bounds for variants. In most mergeable heap structures, merging is the fundamental operation on which others are based. Insertion is implemented by merging a new single-element heap with the ...
In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C. In a min heap, the key of P is less than or equal to the key of C. [1] The node at the "top" of the heap (with no ...
A pairing heap is either an empty heap, or a pairing tree consisting of a root element and a possibly empty list of pairing trees. The heap ordering property requires that parent of any node is no greater than the node itself. The following description assumes a purely functional heap that does not support the decrease-key operation.
A (max) heap is a tree-based data structure which satisfies the heap property: for any given node C, if P is a parent node of C, then the key (the value) of P is greater than or equal to the key of C. In addition to the operations of an abstract priority queue, the following table lists the complexity of two additional logical operations:
To merge two skew binomial heaps together, first eliminate any duplicate rank trees in each heap by performing simple links. Then, merge the heaps in the same fashion as ordinary binomial heaps, which is similar to binary addition. Trees with the same ranks are linked with a simple link, and a 'carry' tree is passed upwards if necessary.