enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular open set - Wikipedia

    en.wikipedia.org/wiki/Regular_open_set

    Each clopen subset of (which includes and itself) is simultaneously a regular open subset and regular closed subset. The interior of a closed subset of is a regular open subset of and likewise, the closure of an open subset of is a regular closed subset of . [2] The intersection (but not necessarily the union) of two regular open sets is a ...

  3. Interior (topology) - Wikipedia

    en.wikipedia.org/wiki/Interior_(topology)

    The point x is an interior point of S. The point y is on the boundary of S. In mathematics, specifically in topology, the interior of a subset S of a topological space X is the union of all subsets of S that are open in X. A point that is in the interior of S is an interior point of S. The interior of S is the complement of the closure of the ...

  4. Boundary (topology) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(topology)

    A set (in light blue) and its boundary (in dark blue). In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S.

  5. Boundary-incompressible surface - Wikipedia

    en.wikipedia.org/wiki/Boundary-incompressible...

    The surface S is said to be boundary-compressible if either S is a disk that cobounds a ball with a disk in or there exists a boundary-compressing disk for S in M. Otherwise, S is boundary-incompressible. Alternatively, one can relax this definition by dropping the requirement that the surface be properly embedded.

  6. Locally closed subset - Wikipedia

    en.wikipedia.org/wiki/Locally_closed_subset

    The interval (,] = (,) [,] is a locally closed subset of . For another example, consider the relative interior of a closed disk in . It is locally closed since it is an intersection of the closed disk and an open ball.

  7. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    The boundary of the body is of zero volume. Thus, the volume of the body is the volume of its interior, and the interior can be exhausted by an infinite sequence of cubes. In contrast, the boundary of an arbitrary set of points can be of non-zero volume (an example: the set of all rational points inside a given cube).

  8. Subspace topology - Wikipedia

    en.wikipedia.org/wiki/Subspace_topology

    In the following, represents the real numbers with their usual topology. The subspace topology of the natural numbers, as a subspace of , is the discrete topology.; The rational numbers considered as a subspace of do not have the discrete topology ({0} for example is not an open set in because there is no open subset of whose intersection with can result in only the singleton {0}).

  9. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    For example, in his influential monographs on elliptic partial differential equations, Carlo Miranda uses the term "region" to identify an open connected set, [10] [11] and reserves the term "domain" to identify an internally connected, [12] perfect set, each point of which is an accumulation point of interior points, [10] following his former ...