Search results
Results from the WOW.Com Content Network
In dilute aqueous solutions the diffusion coefficients of most ions are similar and have values that at room temperature are in the range of (0.6–2) × 10 −9 m 2 /s. For biological molecules the diffusion coefficients normally range from 10 −10 to 10 −11 m 2 /s.
The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]
The self-diffusion coefficient of water has been experimentally determined with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2]
Since the prevalence of point vacancies increases in accordance with the Arrhenius equation, the rate of crystal solid state diffusion increases with temperature. For a single atom in a defect-free crystal , the movement can be described by the " random walk " model.
The diffusion coefficient is the coefficient in the Fick's first law = /, where J is the diffusion flux (amount of substance) per unit area per unit time, n (for ideal mixtures) is the concentration, x is the position [length].
D is the diffusion coefficient that controls the speed of the diffusive process, and is typically expressed in meters squared over second. If the diffusion coefficient D is not constant, but depends on the concentration c (or P in the second case), then one gets the nonlinear diffusion equation .
If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear. The equation above applies when the diffusion coefficient is isotropic ; in the case of anisotropic diffusion, D is a symmetric positive definite matrix , and the equation is written (for three dimensional diffusion) as:
Darken’s equations can be applied to almost any scenario involving the diffusion of two different components that have different diffusion coefficients. This holds true except in situations where there is an accompanying volume change in the material because this violates one of Darken’s critical assumptions that atomic volume is constant.