Search results
Results from the WOW.Com Content Network
In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale.
In mathematics, the conformal dimension of a metric space X is the infimum of the Hausdorff dimension over the conformal gauge of X, that is, the class of all metric spaces quasisymmetric to X. [ 1 ] Formal definition
A classical theorem of Joseph Liouville shows that there are far fewer conformal maps in higher dimensions than in two dimensions. Any conformal map from an open subset of Euclidean space into the same Euclidean space of dimension three or greater can be composed from three types of transformations: a homothety, an isometry, and a special ...
In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important: The conformal orthogonal group.
Conformal geometric algebra (CGA) is the geometric algebra constructed over the resultant space of a map from points in an n-dimensional base space R p,q to null vectors in R p+1,q+1.
Table of Lie groups; ... conformal geometry corresponds to enlarging the group to the conformal ... is the symmetry algebra of two-dimensional conformal field theory.
We say that ~ is (pointwise) conformal to . Evidently, conformality of metrics is an equivalence relation. Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric.
In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, [1] is a rigidity theorem about conformal mappings in Euclidean space.It states that every smooth conformal mapping on a domain of R n, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions).