Search results
Results from the WOW.Com Content Network
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.
The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]
algorithm tarjan is input: graph G = (V, E) output: set of strongly connected components (sets of vertices) index := 0 S := empty stack for each v in V do if v.index is undefined then strongconnect(v) function strongconnect(v) // Set the depth index for v to the smallest unused index v.index := index v.lowlink := index index := index + 1 S.push ...
Recursive algorithms can be replaced with non-recursive counterparts. [18] One method for replacing recursive algorithms is to simulate them using heap memory in place of stack memory. [19] An alternative is to develop a replacement algorithm entirely based on non-recursive methods, which can be challenging. [20]
The algorithm that is presented here does not need an explicit stack; instead, it uses recursive calls to implement the stack. The algorithm is not a pure operator-precedence parser like the Dijkstra shunting yard algorithm. It assumes that the primary nonterminal is parsed in a separate subroutine, like in a recursive descent parser.
Using CPS without tail call optimization (TCO) will cause not only the constructed continuation to potentially grow during recursion, but also the call stack. This is usually undesirable, but has been used in interesting ways—see the Chicken Scheme compiler. As CPS and TCO eliminate the concept of an implicit function return, their combined ...