Search results
Results from the WOW.Com Content Network
These systems catalyze the conversion of ethane to give methane, propane and traces of butane. [1] Cross metathesis can also take place, for example methane and propane can react to give two molecules of ethane. Ethane reacts with toluene to give ethylbenzene and xylene. The reaction involves metallocyclobutane intermediates just as in olefin ...
Reaction of toluene to produce benzene and xylene. Transalkylation, as used by the petrochemical industry, is often used to convert toluene into benzene and xylenes. This is achieved through a disproportionation reaction of toluene in which one toluene molecule transfers its methyl group to another one. The reaction is not selective, and the ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
The reaction mechanism of a Buchner ring expansion begins with carbene formation from ethyl-diazoacetate generated initially through photochemical or thermal reactions with extrusion of nitrogen. carbene mechanism. The generated carbene adds to one of the double bonds of benzene to form the cyclopropane ring. carbene insertion
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2.It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. [7] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.