Search results
Results from the WOW.Com Content Network
One of the main limitation of the Taylor diagram is the absence of explicit information about model biases. One approach suggested by Taylor (2001) was to add lines, whose length is equal to the bias to each data point. An alternative approach, originally described by Elvidge et al., 2014 [17], is to show the bias of the models via a color ...
Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.
The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.
In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of 1 {\displaystyle 1} is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation