Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.
This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...
Let be the amount of time spent on each digit (for each term in the Taylor series). The Taylor series will converge when: (()) = Thus: = For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed.
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
The map exp, defined by its standard Taylor series, is a bijection between the set of elements of S with constant term 0 and the set of elements of S with constant term 1; the inverse of exp is log r = exp ( s ) {\displaystyle r=\exp(s)} is grouplike (this means Δ ( r ) = r ⊗ r {\displaystyle \Delta (r)=r\otimes r} ) if and only if s is ...
This series is absolutely convergent for the given values of s and a and can be extended to a meromorphic function defined for all s ≠ 1. The Riemann zeta function is ζ( s ,1) . The Hurwitz zeta function is named after Adolf Hurwitz , who introduced it in 1882.