enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Codes for electromagnetic scattering by spheres - Wikipedia

    en.wikipedia.org/wiki/Codes_for_electromagnetic...

    Year Name Authors References Language Short Description 1983 BHMIE [3]: Craig F. Bohren and Donald R. Huffman [1]Fortran IDL Matlab C Python "Mie solutions" (infinite series) to scattering, absorption and phase function of electromagnetic waves by a homogeneous sphere.

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  5. Volterra series - Wikipedia

    en.wikipedia.org/wiki/Volterra_series

    The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.

  6. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .

  7. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  8. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose X t {\displaystyle X_{t}} is an Itô drift-diffusion process that satisfies the stochastic differential equation

  9. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. [1]