enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the Bulletin of the American Mathematical Society. [1] 1. Cantor's problem of the cardinal number of the continuum. 2. The compatibility of the arithmetical axioms. 3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes.

  4. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    A Diophantine set is a subset S of , the set of all j-tuples of ... "Hilbert's Tenth Problem is Unsolvable". American Mathematical Monthly. 80 (3): 233–269.

  5. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  6. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Franzén introduces Hilbert's tenth problem and the MRDP theorem (Matiyasevich-Robinson-Davis-Putnam theorem) which states that "no algorithm exists which can decide whether or not a Diophantine equation has any solution at all". MRDP uses the undecidability proof of Turing: "... the set of solvable Diophantine equations is an example of a ...

  7. Entscheidungsproblem - Wikipedia

    en.wikipedia.org/wiki/Entscheidungsproblem

    The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by the work of Yuri Matiyasevich , Julia Robinson , Martin Davis , and Hilary Putnam , with the final piece of the proof in 1970, also implies a ...

  8. A College Student Just Solved a Notoriously Impossible Math ...

    www.aol.com/college-student-just-solved...

    A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proven that there is no algorithmic way to decide whether a given equation even has any solutions. The official statement of the problem was given by Andrew Wiles .