enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In general statistics and probability, "divergence" generally refers to any kind of function (,), where , are probability distributions or other objects under consideration, such that conditions 1, 2 are satisfied. Condition 3 is required for "divergence" as used in information geometry.

  3. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.

  4. Bregman divergence - Wikipedia

    en.wikipedia.org/wiki/Bregman_divergence

    In mathematics, specifically statistics and information geometry, a Bregman divergence or Bregman distance is a measure of difference between two points, defined in terms of a strictly convex function; they form an important class of divergences.

  5. f-divergence - Wikipedia

    en.wikipedia.org/wiki/F-divergence

    In probability theory, an -divergence is a certain type of function (‖) that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence , Hellinger distance , and total variation distance , are special cases of f {\displaystyle f} -divergence.

  6. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  7. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  8. Jensen–Shannon divergence - Wikipedia

    en.wikipedia.org/wiki/Jensen–Shannon_divergence

    In probability theory and statistics, the Jensen–Shannon divergence, named after Johan Jensen and Claude Shannon, is a method of measuring the similarity between two probability distributions. It is also known as information radius ( IRad ) [ 1 ] [ 2 ] or total divergence to the average . [ 3 ]

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.