Search results
Results from the WOW.Com Content Network
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function. The usefulness of derivatives to find extrema is proved ...
If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at ( x , y ) implies that f xx and f yy have the same sign there.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
if it is zero, then x could be a local minimum, a local maximum, or neither. (For example, f(x) = x 3 has a critical point at x = 0, but it has neither a maximum nor a minimum there, whereas f(x) = ± x 4 has a critical point at x = 0 and a minimum and a maximum, respectively, there.) This is called the second derivative test.
A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue).. In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval [,], then must attain a maximum and a minimum, each at least once.
The relation between the second derivative and the graph can be used to test whether a stationary point for a function (i.e., a point where ′ =) is a local maximum or a local minimum. Specifically, If ″ <, then has a local maximum at .