Search results
Results from the WOW.Com Content Network
In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations [1] of Solar System objects. Because most planets (except Mercury ) and many small Solar System bodies have orbits with only slight inclinations to the ecliptic , using it as the ...
The geocentric ecliptic system was the principal coordinate system for ancient astronomy and is still useful for computing the apparent motions of the Sun, Moon, and planets. [3] It was used to define the twelve astrological signs of the zodiac , for instance.
The Stonyhurst heliographic coordinate system, developed at Stonyhurst College in the 1800s, has its origin (where longitude and latitude are both 0°) at the point where the solar equator intersects the central solar meridian as seen from Earth. Longitude in this system is therefore fixed for observers on Earth.
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
A geocentric coordinate system can be more convenient when dealing only with bodies mostly influenced by the gravity of the Earth (such as artificial satellites and the Moon), or when calculating what the sky will look like when viewed from Earth (as opposed to an imaginary observer looking down on the entire Solar System, where a different ...
Solar longitude, commonly abbreviated as Ls, is the ecliptic longitude of the Sun, i.e. the position of the Sun on the celestial sphere along the ecliptic.It is also an effective measure of the position of the Earth (or any other Sun-orbiting body) in its orbit around the Sun, [1] usually taken as zero at the moment of the vernal equinox. [2]
The barycentric celestial reference system (BCRS) is a coordinate system used in astrometry to specify the location and motions of astronomical objects. It was created in 2000 by the International Astronomical Union (IAU) to be the global standard reference system for objects located outside the gravitational vicinity of Earth: [1] planets, moons, and other Solar System bodies, stars and other ...
Ecliptic coordinates are convenient for specifying positions of Solar System objects, as most of the planets' orbits have small inclinations to the ecliptic, and therefore always appear relatively close to it on the sky. Because Earth's orbit, and hence the ecliptic, moves very little, it is a relatively fixed reference with respect to the stars.