Search results
Results from the WOW.Com Content Network
The flagellum in archaea is called the archaellum to note its difference from the bacterial flagellum. [7] [8] Eukaryotic flagella and cilia are identical in structure but have different lengths and functions. [9] Prokaryotic fimbriae and pili are smaller, and thinner appendages, with different functions. Cilia are attached to the surface of ...
Eukaryotic flagella are complex cellular projections that lash back and forth, rather than in a circular motion. Prokaryotic flagella use a rotary motor, and the eukaryotic flagella use a complex sliding filament system. Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (archaea) or proton-driven (bacteria). [124]
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
Eukaryotic flagella—those of animal, plant, and protist cells—are complex cellular projections that lash back and forth. Eukaryotic flagella are classed along with eukaryotic motile cilia as undulipodia [17] to emphasize their distinctive wavy appendage role in cellular function or motility. Primary cilia are immotile, and are not undulipodia.
Flagella are whip-like structures protruding from the bacterial cell wall and are responsible for bacterial motility (movement). The arrangement of flagella about the bacterial cell is unique to the species observed. Common forms include: Monotrichous – Single flagellum; Lophotrichous – A tuft of flagella found at one of the cell poles
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface. The structure of flagellin is responsible for the helical shape of the flagellar filament, which is important for its proper function. [4] It is transported through the center of the filament to the tip where it polymerases spontaneously into a part of the ...
Eukaryotic flagella are complex cellular projections that lash back and forth, rather than in a circular motion. Prokaryotic flagella use a rotary motor, and the eukaryotic flagella use a complex sliding filament system. Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (archaea) or proton-driven (bacteria). [22]
Prokaryotic organelles and cell components; Organelle/macromolecule Main function Structure Organisms anammoxosome: anaerobic ammonium oxidation: ladderane lipid membrane "Candidatus" bacteria within Planctomycetota: carboxysome: carbon fixation: protein-shell bacterial microcompartment: some bacteria chlorosome: photosynthesis