Ad
related to: standard hydrogen electrode
Search results
Results from the WOW.Com Content Network
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
Standard hydrogen electrode scheme: 1) Platinized platinum electrode, 2) Hydrogen gas, 3) Acid solution with an activity of H + = 1 mol/L, 4) Hydroseal for prevention of oxygen interference, 5) Reservoir via which the second half-element of the galvanic cell should be attached.
M denotes the electrode made of metal M (abs) denotes the absolute potential (SHE) denotes the electrode potential relative to the standard hydrogen electrode. A different definition for the absolute electrode potential (also known as absolute half-cell potential and single electrode potential) has also been discussed in the literature. [3]
The most common types of reference electrodes used in analytical chemistry include the standard hydrogen electrode, the saturated calomel electrode, and the Ag/AgCl electrode. [3] The standard hydrogen electrode (SHE) is the primary reference electrode that has a potential of 0 volts at all temperatures and a pressure of 1 atm. The figure on ...
Ad
related to: standard hydrogen electrode