enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.

  3. Polytrope - Wikipedia

    en.wikipedia.org/wiki/Polytrope

    The normalized density as a function of scale length for a wide range of polytropic indices. In astrophysics, a polytrope refers to a solution of the Lane–Emden equation in which the pressure depends upon the density in the form = (+) / = + /, where P is pressure, ρ is density and K is a constant of proportionality. [1]

  4. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    where P is the pressure, V is volume, n is any real number (the "polytropic index"), and C is a constant. This equation can be used to accurately characterize processes of certain systems, notably the compression or expansion of a gas, but in some cases, liquids and solids.

  6. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    A polytropic process, in particular, causes changes to the system so that the quantity is constant (where is pressure, is volume, and is the polytropic index, a constant). Note that for specific polytropic indexes, a polytropic process will be equivalent to a constant-property process.

  7. Stirling cycle - Wikipedia

    en.wikipedia.org/wiki/Stirling_cycle

    180° to 270°, pseudo-isothermal expansion. The expansion space is heated externally, and the gas undergoes near-isothermal expansion. 270° to 0°, near-constant-volume (or near-isometric or isochoric) heat removal. The gas is passed through the regenerator, thus cooling the gas, and transferring heat to the regenerator for use in the next cycle.

  8. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  9. Diesel cycle - Wikipedia

    en.wikipedia.org/wiki/Diesel_cycle

    The formula is more complex than the Otto cycle (petrol/gasoline engine) relation that has the following formula: , = The additional complexity for the Diesel formula comes around since the heat addition is at constant pressure and the heat rejection is at constant volume.