Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of only 0.2% (see tabulation above). For a linear triatomic molecule such as CO 2 , there are only 5 degrees of freedom (3 translations and 2 rotations), assuming vibrational modes are not ...
An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...
It is adiabatic (no heat nor mass exchange) and reversible. Isenthalpic : The process that proceeds without any change in enthalpy or specific enthalpy. Polytropic : The process that obeys the relation =.
For a simple substance, during an adiabatic process in which the volume increases, the internal energy of the working substance must decrease . The mathematical equation for an ideal gas undergoing a reversible (i.e., no entropy generation) adiabatic process can be represented by the polytropic process equation [3]
The equal sign refers to a reversible process, which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings. [10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0 ...
The flash evaporation of a single-component liquid is an isenthalpic process and is often referred to as an adiabatic flash. The following equation, derived from a simple heat balance around the throttling valve or device, is used to predict how much of a single-component liquid is vaporized.
Polytropic compression will use a value of between 0 (a constant-pressure process) and infinity (a constant volume process). For the typical case where an effort is made to cool the gas compressed by an approximately adiabatic process, the value of n {\displaystyle n} will be between 1 and κ {\displaystyle \kappa } .