Search results
Results from the WOW.Com Content Network
In the chemical industry and industrial research, catalysis play an important role. Different catalysts are in constant development to fulfil economic, political and environmental demands. [3] When using a catalyst, it is possible to replace a polluting chemical reaction with a more environmentally friendly alternative.
Catalysis affects the environment by increasing the efficiency of industrial processes, but catalysis also plays a direct role in the environment. A notable example is the catalytic role of chlorine free radicals in the breakdown of ozone. These radicals are formed by the action of ultraviolet radiation on chlorofluorocarbons (CFCs).
The surface area of a solid catalyst has a strong influence on the number of available active sites. In industrial practice, solid catalysts are often porous to maximize surface area, commonly achieving 50–400 m 2 /g. [2] Some mesoporous silicates, such as the MCM-41, have surface areas greater than 1000 m 2 /g. [10]
The two most common catalyst geometries used today are honeycomb catalysts and plate catalysts. The honeycomb form usually consists of an extruded ceramic applied homogeneously throughout the carrier or coated on the substrate. Like the various types of catalysts, their configuration also has advantages and disadvantages.
The catalyst factory has a capacity of over 15 tons per year, and produces the unique proprietary Fischer–Tropsch catalysts developed by the company's R&D division. In 2016, INFRA designed and built a modular, transportable GTL (gas-to-liquid) M100 plant for processing natural and associated gas into synthetic crude oil in Wharton TX .
Ziegler–Natta catalysts of the third class, non-metallocene catalysts, use a variety of complexes of various metals, ranging from scandium to lanthanoid and actinoid metals, and a large variety of ligands containing oxygen (O 2), nitrogen (N 2), phosphorus (P), and sulfur (S). The complexes are activated using MAO, as is done for metallocene ...
Organometallic compounds are widely used both stoichiometrically in research and industrial chemical reactions, as well as in the role of catalysts to increase the rates of such reactions (e.g., as in uses of homogeneous catalysis), where target molecules include polymers, pharmaceuticals, and many other types of practical products.
Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities. Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese