Search results
Results from the WOW.Com Content Network
Zinc compounds, like those of main group elements, are mostly colourless. Exceptions occur when the compound contains a coloured anion or ligand. However, zinc selenide and zinc telluride are both coloured due to charge-transfer processes. Zinc oxide turns yellow when heated due to the loss of some oxygen atoms and formation of a defect structure
The Zincke reaction is an organic reaction, named after Theodor Zincke, in which a pyridine is transformed into a pyridinium salt by reaction with 2,4-dinitro-chlorobenzene and a primary amine.
The oxygen on an aldehyde or ketone coordinates to the zinc to form the six-member chair like transition state 3. A rearrangement occurs in which zinc switches to the aldehyde or ketone oxygen and a carbon-carbon bond is formed 4. Acid workup 5,6 removes zinc to yield zinc(II) salts and a β-hydroxy-ester 7. [5]
The reaction is exothermic, and the mixture can reach the boiling point, if external cooling is not applied. The resulting product, diethyl 3,5-dimethylpyrrole-2,4-dicarboxylate, has been called Knorr's Pyrrole ever since. In the Scheme above, R 2 = COOEt, and R 1 = R 3 = Me represent this original reaction.
Solutions of sodium zincate may be prepared by dissolving zinc, zinc hydroxide, or zinc oxide in an aqueous solution of sodium hydroxide. [2] Simplified equations for these complex processes are: ZnO + H 2 O + 2 NaOH → Na 2 Zn(OH) 4 Zn + 2 H 2 O + 2 NaOH → Na 2 Zn(OH) 4 + H 2
Zinin reaction or Zinin reduction involves reduction of nitro aromatic compounds to the amines using sodium sulfide. [1] It is used to convert nitrobenzenes to anilines. [2] [3] The reaction selectively reduces nitro groups in the presence of other easily reduced functional groups (e.g., aryl halides and C=C bonds) are present in the molecule.
The reaction is effected with zinc. The key zinc-intermediate formed is a carbenoid (iodomethyl)zinc iodide which reacts with alkenes to afford the cyclopropanated product. The rate of forming the active zinc species is increased via ultrasonication since the initial reaction occurs at the surface of the metal.
The reaction is named after its co-discoverer, John E. McMurry. The McMurry reaction originally involved the use of a mixture TiCl 3 and LiAlH 4, which produces the active reagents. Related species have been developed involving the combination of TiCl 3 or TiCl 4 with various other reducing agents, including potassium, zinc, and magnesium.